Keview on Top. Spaces
Let X be a top. space which maybe has some nice properties. Let π: Y → X be a cont. map. This defines a sheaf on X via $U \mapsto \Gamma(U) = \frac{1}{2} f: U \to Y$ cont., $\pi \circ f = id \overline{3}$. This is in a sense sheaf of sections

Exercise H : (See Ex. II.1.14 in Hartshorne) Prove that for any sheaf of sets F on X, there is a top. space LFS and a continuous map $\pi: l \in S \to X$ with the following properties 1) F is the sheaf of sections of π . $2)$ π is a local homeomorphism. 3) for all $x \in X$, $\pi^{-1}(x) = F_{x}$.

Usually, $[F]$ is not Hausdorff. For example if $x \in X$ and $F \in \mathbb{Z}_x$ is a skyscraper sheaf at x, then [F] is X itself, except over x, there are countably many points which cannot be separated

Set $Sh(x)$ = abelian category of sheaves of abelian groups on X (there are some variants of this, depending on what X is). Note $Sh(X)$ has enough injectives (is a Grothundieck category), so we can take the right derived functors of $\Gamma'(X, -)$ for an injective resolution:

> $0 \rightarrow F \rightarrow I^* \rightarrow I' \rightarrow \cdots$ \Rightarrow 0 \rightarrow $\Gamma(X, F)$ \rightarrow $\Gamma(X, I^0)$ \rightarrow \cdots \Rightarrow Hⁱ(x, F) = Hⁱ(-----

H is a cohomological functor, i.e. satisfies the axioms for a cohomology theory.
= 0 xxxxx If $f: X \rightarrow Y$ is a condinuous map, we have the direct image functor:
I $E(i) = F/P^t(i)$ did issues $S(N) \rightarrow S(N)$ alle if $Y \rightarrow t$ $f_{*} F(\mu) = F(f'(\mu))$, which maps $Sh(x) \rightarrow Sh(y)$. Note if $y = pt$, $f_{*} = \Gamma(x, -)$ so this is a generalization. This is also left exact. $\{\downarrow_{\star}\uparrow\rightarrow\downarrow_{\star}\uparrow\rightarrow\cdots\}$ $\frac{1}{1}$ $\frac{d}{dx}$ $\frac{d}{dx}$ resolution of F, and are called higher direct images.

 $\frac{DeF}{C}$ Let Gibt B be a left exact functor between abelian categories. An object A in it is G -acyclic it $R^cG(A) = O$ for $i > 0$ Assuming enough injectives.

Prop. To derive G in the above context, one can use resolutions of acyclic objects.

An example is a cont map $f: x \rightarrow y$ the flabby sheaves on X are acyclic with respect to fx. Indeed an injective sheaf is flabby. The proof uses the extension functor, which we
I review later

 $\frac{C_{\alpha n}}{N}$ we visualize higher direct images? By def'n, $R^c f_k F$ is a sheafification of the presheaft $V \mapsto H^c(f^{-1}(V), F)$ on Y. One might notice this is a "cohomology of fibers

 $\boxed{\text{Thm (Proper Base Chung): If f is proper, (Rⁱf_*F)_y \cong Hⁱ(X_y, F|_{X_y})}.$

Let 16 = B^B E be a left exact functor. Suppose 16, B have enough injectives. Suppose a takes injectives to ß-acyclic. Then there is a spectral sequence, with

$$
E_{2}^{P_{1}R}(A) = R_{2}^{R}P(R_{2}^{P_{1}R}(A)) \Rightarrow R_{1}^{P_{1}R}(A) \Rightarrow R_{2}^{P_{1}R}(A) \Rightarrow R_{1}^{P_{1}R}(A) \Rightarrow R_{2}^{P_{1}P_{1}P_{1}} \Rightarrow L_{1}^{P_{1}P_{1}P_{1}} \Rightarrow L_{1}^{P_{1}P_{1}P_{1}} \Rightarrow L_{1}^{P_{1}P_{1}P_{1}} \Rightarrow L_{1}^{P_{1}P_{1}} \Rightarrow L
$$

<u>Example: Take a smooth C-alg variety X, and set dim_c X-n. Then \mathcal{B}_x = Qx[2n]. Take F= Qx,</u> and $p: X \rightarrow pt$. Then applying the above

 $D_{\rho t} \cdot R_{P_1} (\mathbb{Q}_x) = R_{P_x} \cdot D_x (\mathbb{Q}_x) = R_{P_x} \cdot D_x - R_{P_x} \mathbb{Q}_x [z \cdot I]$

$$
F_{\overline{x}} = \lim_{\substack{\overline{x} \to u \\ y \neq 0}} F(u)
$$

Which can be related to the henselization.

Now taking \overline{X} = $X \times_k \overline{k}$, we get that G= Gal (\overline{k}/k) acts on \overline{X} , and hence on $\overline{X}_{e\text{f}}$ by autoequivalences. Given a sheaf $FES(\overline{X}_{et})$, suppose $\sigma^*F \cong F$ for all $\sigma \in G$. Then we get a morphism $\Theta \colon H^i(\overline{X}_{et}, o^g F) \longrightarrow H^i(\overline{X}_{et}, F)$ which is an automorphism. This can give (via several difficult conjectures) to Hodge Theory!

Def : Let G be a finite group. A finite étale $~~$ morphism $f: y \rightarrow x$ is a Galois covering if a) G acts on Yx,
b) If Gx = GxX, then we have a canonical map $Y{\times}G_{X} \longrightarrow Y{\times}_{X}Y$, and this should be an isomorphism

ExerciseLet kck be ^a finite Galois extension with $G = Gal (k/k)$. Put $f: y \rightarrow x$, w/ $y = Spec k'$, $X =$ Speck. Prove f is a Galois covering.

 $\frac{\mathcal{P}_{\mathsf{rop}}}{\mathcal{P}_{\mathsf{top}}}$ Let $f: \gamma \twoheadrightarrow \chi$ be a Galois covering with group G. Let F be a presheaf on Xet. The group G acts on $F(Y)$, with diagram

$$
\frac{(k) F(x) \xrightarrow{f} F(y) \xrightarrow{(0, ..., \infty)} F(y)^{n}, G = \{ \sigma_1, ..., \sigma_m \}}{}
$$

Then if F is ^a sheaf this diagram is exact equaliser

 $\frac{\text{Proof}}{\text{1.4}}$ chep 2 in EC. \blacksquare

As an application, lets look at étale sheaves on Speck, S((Speck)et). If G is a profinite group $(G = \lim_{n \to \infty} \frac{\sqrt{G}}{G} \frac{G}{G} \frac{G}{G}$ anten A G-module M is discrete if for all men, G_m is a discrete group. Thus if $G = Gal (k/k)$, we have an abelian category of discrete G-modules. Claim: $S((s_{pec}k)_{et}) \cong$ this category.

Let FES((Spec.h)et). We have a geometric pt. \overline{x} = Spec \overline{k} -> Speck = x. Taking
The stalk, we only need to look @ the system of k/k finite Galois. Checking
The defin: def'u

$$
F_{\mathbf{x}} = \bigcup_{\mathbf{k}'_{\mathbf{k}}} F(\mathbf{s}_{\mathbf{p} \mathbf{k}} \mathbf{k}') \stackrel{\text{def}}{\sim} \text{Gal}(\mathbf{k}'_{\mathbf{k}})
$$

and is a discrete module!

Conversely, if M is a discrete Galoismodule, let $u \rightarrow$ Speck be étale $u \in \mathcal{U}$ = \mathcal{U} speck' fin : Sep .

Take $F(u) = \oplus M^{Gal(\overline{k}/\mu)}$. Certainly a presheaf, and an application of the proposition can show its a $\frac{k}{k}$ sheaf. Presheaves and Sheaves Theorem: The inclusion f: $S(x_{et}) \longrightarrow P(x_{et})$ is left exact, and has a left adjoint $\begin{array}{ccc} \text{exact} & \text{function} & \text{shearification} : & \text{A} \cdot \mathbb{P}(\chi_{ef}) \longrightarrow \mathbb{S}(\chi_{ef}), & \text{We} \text{ see} \end{array}$ a) P and aP have the same stafks. b) $TFAE$: i) $0 \rightarrow F \rightarrow F' \rightarrow F''$ is exact in $S(X_{et})$ iii) $\forall \overline{x} \rightarrow X$, $0 \rightarrow F_{\overline{x}} \rightarrow F'_{\overline{x}} \rightarrow F''_{\overline{x}}$ is exact. ii) $\forall y_{x} \in X_{e+}, \quad 0 \rightarrow F(u) \rightarrow F'(u) \rightarrow F''(u)$ is exact in gros, <u>c)</u> | FAE i) $\phi: F \rightarrow F'$ is a surjection in $S(\chi_{e^+})$ ii) $\forall w \times \in X_{et}$, $\forall s \in F(u)$, there is a covering $\{u_i \rightarrow u\}$ + elements $s_i \in F(u_i)$ such that $\phi_{u_i}(s_i)$ = res_{u,u}, (s). iii) $\forall \vec{x} \rightarrow X$, $\vec{F} \vec{x} \rightarrow \vec{F} \vec{x}$ is surj Examples
1 a) M an abeliangrp. Pm be the constant presheaf Pm(4x) = M. Define Fm = a Pm, as
H. constant shoul the constant sheaf <u>b</u>) Kecall sheaf G_m on X_{et} , represented by Spec $\mathbb{Z}[t,t^{-1}]$ $X_{S_{prec}}\mathbb{Z}}$ X. There is an endomorphism $t\mapsto t^r$, denoted $G_m \stackrel{\sim}{\rightarrow} G_m$. Lets look at the kernel. $G_m(u) = \int(u, \mathcal{O}_u)$ n \int_0^L for the point is functions whose n point is one.
 \int_0^L for \int_0^L ound is represented by
 $\mu_n = \text{Spec } \mathbb{Z}[t,t^1]/(t^{n-1}).$ $G_m(u) = \Gamma(u, \mathcal{O}_u)^{\mathcal{E}}$ and is represented by
 $\mu_n = \text{Spec } \mathbb{Z}[t, t^4]/(t^{n-1})$ So we have an exact sequence $O \rightarrow \mu_n \rightarrow G_m \stackrel{\sim}{\rightarrow} G_m$. Is it surjective
Claim: If (n char X)=1 (<=> Vxe X, (n char k(x)) =1) then its sariective. Cl aim: If $(n, charX)$ =1 (<=> $\forall x \in X$, $(n, chark(x)$ =1), then its surjective. Indeed let $u = SpecA$, $\alpha \in A^*$. Need $v \rightarrow u$ etale s.t. 3 b $\epsilon P(v, \omega)$, bⁿ = a. Take Spec B, $B = A[t]/t - a$. But if we have the conditions on the characteristic, This is standard e'tale Note that in the flat topology, this sequence is always exact! <u>Def:</u> The short exact sequence $1 \rightarrow \mu$ m 6 m $\rightarrow 6$ m 1 is called the Kummer segunce. One should think of this as the étale analog of the exponential sequence. $H (X_{e1}, G_m) \longrightarrow H (X_{e1}, \mu_m)$ W^{ill prove $H'(X_{zan}G_m)$ analog of the 1st analog of the 1st Rex

Suppose
$$
X/\mu
$$
, $\overline{\mu}$ is $\overline{\mu}$. Thus $\mu = \frac{1}{2}(\sqrt{\pi}\overline{\mu})$, $\mu_{21} = -\text{constrained}.$ Indeed $\overline{\mu}$ to $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{$